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Abstract. The spectrum and damping of waves in partially randomized multilayer structures
are calculated. A method of calculation that was proposed and demonstrated earlier, for the
model of a superlattice with a harmonic dependence of its material parameters along its axis
in the initial state, is extended to the case of a multilayer structure (i.e., a superlattice with sharp
interfaces). One- and three-dimensional random modulations of the period are considered, and the
correlation function of the superlattice is derived as a series in which each term is a product of a
harmonic and a monotonically decaying function. The law of decay of the correlation function is
Gaussian for smooth inhomogeneities, and has different forms for one- and three-dimensional short-
wavelength inhomogeneities. The spectrum and damping of waves in the superlattice described by
this correlation function are found in the weak-coupling approximation in the vicinities of all of the
odd Brillouin zone boundaries. Analytical dependences of the main characteristics of the spectrum
and damping on the zone numbern are obtained. The conditions for the closing of the gaps at the
Brillouin zone boundaries are derived, and depend on the dimensionality of the inhomogeneities
and the degree of their smoothness.

1. Introduction

Investigations of the spectrum of waves in partially randomized superlattices (multilayer
structures) have been carried out very intensively in recent years. An even greater activity is
dedicated to the kinetics of electrons in similar structures. Despite the fundamental differences
between the physical problems, the mathematical approaches that are used for the development
of a theory of partially randomized superlattices are analogous to a large degree for the waves
as well as for the conduction electrons. Several such approaches now exist.

The modelling of the randomization by altering the order of successive layers of two
different materials A and B (of different or the same thickness) is in wide use now. It is
assumed that neither the parameters of the materials nor the layer thicknesses change when
the system is randomized: only the periodicity ABAB· · · in the arrangement of the layers
corresponding to the ideal superlattice is destroyed. The different versions of this model differ
in the types of disruptions of the periodicity in the arrangement of the layers: in some versions
the layers A and B are arranged according to the Fibonacci sequence rule; in others they form
either partially correlated or totally uncorrelated random sequences. A number of important
and interesting results have been derived with the help of these models in studies of electron
dynamics [1–4], or the propagation of elastic [5,6] and spin [7,8] waves.
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In several papers the study of wave propagation in a superlattice was conducted in the
framework of a method which consists in the numerical modelling of the random deviations
of the interfaces from their initial periodic arrangement [9–11].

The model of smooth interfaces, which is based on the introduction of a doubly periodic
dependence of a physical parameter along the superlattice axis, has been used in another
approach to the investigations of the consequences of the disruption of periodicity [12, 13].
In this approach the amplitude or phase of the main harmonic function which describes the
initial ideal superlattice is modulated by another harmonic function. The periods of these
two functions can be commensurate or incommensurate with each other. This model leads
to extremely complicated and interesting spectra. A wide number of situations (connected,
for example, with problems of the theory of quasicrystals) which arise when the disruptions
of periodicity appear, are studied by this approach; the randomization of the spectrum of the
system is only one of these situations.

One more approach to the description of partially randomized superlattices was proposed
recently in references [14, 15]. This approach is based on the well known radio-physics
model of the random modulation of the frequency or phase of a periodic radio signal [16,17].
In reference [14] a brief outline of this approach is given for the case of spin waves in a
superlattice whose period is modulated by a one-dimensional random function of a coordinate.
In reference [15] a detailed description of the approach, and its extension to the cases of two-
and three-dimensional random modulations of a superlattice, are presented. In this approach
the correlation function of the superlattice is found analytically for each type of random
modulation. The spectrum, damping, and other characteristics of the waves are calculated by
this method for the model with a harmonic dependence of material parameters along the axis of
the initial superlattice. The calculation is restricted to the first Brillouin zone. Such a model of
a superlattice is sufficient for the demonstration of the application of this approach. However,
it is very far from real superlattices of the type of multilayers which are widely investigated
experimentally now. In the present paper this approach is extended to a multilayer system in
which the dependence of material parameters in the initial state has the form of rectangular
space pulses. It has been shown earlier [18] that for this type of superlattice the spectrum in
all odd Brillouin zones can be studied by this method in the Bourret approximation [19], and
not just the spectrum in the first zone as was done in reference [15].

The outline of this paper is as follows. In section 2 features of the application of the
method suggested in reference [15] to the multilayer type of a superlattice are described. We
also compare this method with a standard method of calculation of the spectrum of such a
superlattice, and discuss drawbacks as well as advantages of both methods for the example of
the ideal multilayer structure. In section 3 the correlation function of the multilayer structure is
derived for different types of random modulations of the period of the structure. Because one
of the main quantities appearing in the expression for the correlation function—the structure
function of the random modulation—does not depend on the form of the superlattice, we can
use all of the results for the structure function obtained in reference [15]. But one of the
cases that is investigated in the present paper, namely the case of three-dimensional short-
wavelength inhomogeneities, was not studied in reference [15] in sufficient detail. That is
why considerable attention is given to the study of this case. In section 4 we investigate the
spectrum and damping of a randomly modulated multilayer structure for the cases of one- and
three-dimensional modulation. This investigation is carried out for all odd Brillouin zones.
Dependences of the main parameters of the spectrum (the width of the gap at thenth Brillouin
zone boundary, the damping of the waves) on the zone numbern are obtained by analytical as
well as numerical methods.
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2. Methods of calculation; the spectrum of an ideal superlattice in the weak-coupling
approximation

The method which we use in this paper for the investigation of the spectrum and damping of
waves in partially disordered superlattices, like the majority of the methods which are used
for this purpose, does not depend on the physical nature of the waves. For definiteness we
consider here spin waves, but the main results are represented in a form that is valid in some
approximations for elastic and electromagnetic waves as well.

We describe the dynamics of a ferromagnet by the Landau–Lifshitz equation

Ṁ = −g
[
M ×

(
−∂Hm
∂M

+
∂

∂x

∂Hm
∂(∂M/∂x)

)]
(1)

with the energy density

Hm = 1

2
α

(
∂M

∂x

)2

− 1

2
β(M · b)2 −M ·H. (2)

HereM is the magnetization,H is the magnetic field,g is the gyromagnetic ratio,α is the
exchange parameter,β is the value of the magnetic anisotropy, andb is the direction of the
anisotropy axis.

In homogeneous matter all of these parameters are constants characterizing the material.
In an inhomogeneous medium they become random or regular (e.g., periodic) functions of
the coordinates. We consider the consequences of such coordinate dependences of material
parameters for wave propagation for the example of spin waves in a ferromagnet in which only
the value of the magnetic anisotropyβ depends onx. Such an anisotropy can be represented
in the form

β(x) = β[1 + γρ(x)] (3)

whereβ is the average value of the anisotropy,γ = 1β/β is its relative rms fluctuation, and
ρ(x) is a centralized(〈ρ〉 = 0) and normalized(〈ρ2〉 = 1) function of coordinates. For a
random functionρ(x) the angle brackets here denote either averaging over random realizations
or spatial averaging. Both operations are equivalent according to the ergodicity principle for
homogeneous random fields. For regular functionsρ(x) the angle brackets denote spatial
averaging.

ChoosingH andb to be directed along thez-axis, performing the usual linearization of
equation (1), and takingMx,My ∝ exp(iωt), we obtain the following equation for the circular
projectionm+ = Mx + iMy :

∇2m+ + (ν − ερ(x))m+ = 0. (4)

In writing equation (4) we have introduced the notation

ν = ω − ω0

αgM
ε = γβ

α
(5)

whereω0 = g(H + βM). In the scalar approximation both the spectrum of elastic waves in
a medium with an inhomogeneous density and the spectrum of electromagnetic waves in a
medium with an inhomogeneous dielectric permeability are also described by this equation
with redefinitions of the parameters. For elastic waves we have

ν = (ω/v)2 ε = νγu (6)

whereγu is the rms fluctuation of the density of the material andv is the wave velocity. For
an electromagnetic wave we have

ν = εe(ω/c)2 ε = νγe (6a)
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whereεe is the average value of the dielectric permeability,γe is its rms deviation, andc is
the speed of light. Equation (4) becomes more complicated when inhomogeneities of the
elastic modulus, of the exchange parameter, or of the magnetization are considered: terms of
the form(∇m+)(∇ρ) appear in the equation in these cases. Inhomogeneities of the direction
of the anisotropy axis also complicate the equation because they lead to the appearance of a
stochastic magnetic structure in a ferromagnet, which interacts with spin waves [20]. In this
paper we do not concern ourselves with such cases.

Let us consider an ideal multilayer structure which consists of periodically alternating
layers of two materials with different physical properties—in our case, in the value of the
magnetic anisotropy. Let the thickness of the interfaces between the layers go to zero, i.e.,
let us consider the model of sharp interfaces. It is well known that the exact solution of
equation (4) can be found for this model. Indeed, equation (4) becomes an equation with
constant coefficients in each material, which has a solution in the form of plane waves.
Matching these solutions at the boundaries between layers, and using the periodicity conditions,
one can obtain for the simplest case, where the thicknesses of the two materials are equal to
each other, the following transcendental equation (see, for example, [21]):

cos
2πkz
q
= cosα+ cosα− − ν1√

ν2
1 − ε2

sinα+ sinα− (7)

whereα± = (π/q)√ν1± ε, ν1 = ν − κ2, κ2 = k2
x + k2

y , k is the wave vector, andq is the
vector of the reciprocal superlattice (|q| ≡ q = 2π/l, wherel is the period of the superlattice).

For ε/ν1� 1 equation (7) can be expanded as a power series in this parameter:

sin
π

q
(
√
ν1− kz) sin

π

q
(
√
ν1 + kz) = 1

8

(
ε

ν1

)2

[α0 sin 2α0 − 2 sin2 α0]

+
1

16

(
ε

ν1

)4
[

1

2
α2

0

(
3

2
+ sin2 α0

)
+

9

8
α0 sin 2α0 − 3 sin2 α0

]
+ · · · (8)

whereα0 = (π/q)√ν1.
For ε→ 0 the solutions of this equation are

ν1n = (kz − nq)2 n = 0,±1,±2, . . . (9)

The branches withn 6= 0 cross the main branchν1 = k2
z at the crossing resonance points

krn = nq

2
νrn =

(
nq

2

)2

(10)

which correspond to the boundaries of the Brillouin zones in the extended zone scheme.
To restrict ourself to the two-wave approximation in the vicinities of these crossing

resonances we expand sin(π/q)(
√
ν1 − kz) on the left-hand side of equation (8) in the

vicinity of the main branch
√
ν1 = kz, and sin(π/q)(

√
ν1 + kz) in the vicinity of the

branches
√
ν1 = (nq − kz), and then multiply both sides of the resulting equation by

(
√
ν1 + kz)[

√
ν1 + (nq − kz)]. To obtain an equation for the eigenfrequencies in the vicinity of

the odd Brillouin zone boundaries

n = 2m + 1 m = 1, 2, 3, . . . (11)

only the first term on the right-hand side of equation (8), proportional toε2, needs to be kept,
and the resonance valuesk = krn andν = νrn have to be substituted into this term. For waves
propagating along thez-axis (kz = k, κ = 0) we have

(ν − k2)[ν − (k − nq)2] =
(
3

2n

)2

(12)
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where3 = 4ε/π .
For obtaining the equation in the vicinity of the even Brillouin zone boundaries

n = 2m m = 1, 2, 3, . . . (13)

the next term of equation (8), proportional toε4, has to be taken into account, and the resonance
valuesk = krn andν = νrn have to be substituted into it. The term proportional toε2 vanishes
at the resonance points, but we have to expand this term in the vicinity of these points. In this
way we obtain the dispersion relation

(ν − k2)[ν − (k − nq)2] − 1

2

(
π

4

)2(
3

krn

)2

(ν − k2
rn)−

3

16

(
π

4

)4(
3

krn

)4

= 0. (14)

Equations (12) and (14) describe the well known effect of the removal of degeneracy
and formation of gaps1νn at the Brillouin zone boundaries, for the form of the superlattice
considered:

1νn =


3

n
n = 2m + 1(

π3

2nq

)2

n = 2m.
(15)

One can see that the gaps at the boundaries of the even Brillouin zones are quantities of the
next order in comparison with the gaps at the boundaries of the odd Brillouin zones, and they
decrease proportionally ton−2 whenn increases.

Let us consider now another method for obtaining the spectrum of a superlattice—the
averaged Green function approach. This method takes into account from the very beginning
that the parameterε is small. That is a drawback of this method, but it has an advantage that is
more important for us: the method permits studying superlattices with arbitrary dependences
of ρ on x, including a random dependence. By carrying out the Fourier transformation of
equation (4), we obtain the integral equation satisfied by the transformmk:

(ν − k2)mk = ε
∫
mk1ρk−k1 dk1. (16)

The eigenfrequencies of the waves described by equation (16) are determined by the poles of
the Fourier transform of the average of the corresponding Green function. For equation (16)
it has the form

Gν,k = 1

ν − k2 −Mν,k

(17)

where the mass operatorMν,k is determined by a series in powers ofε.
In this paper we have restricted ourselves to considering only the first nonvanishing

contribution inε to the mass operator (the Bourret approximation):

Mν,k = (2π)3

V
ε2
∫ 〈ρk−k1ρk1−k〉

ν − k2
1

dk1 (18)

whereV is the volume of the system. For any homogeneous random function the relationship

〈ρ(k)ρ(k′)〉 = S(k)δ(k − k′) (19)

holds, whereS(k) is the spectral density of the random functionρ(x), which is connected with
the correlation functionK(r) = 〈ρ(x)ρ(x + r)〉 by a Fourier transformation (the Wiener–
Khinchin theorem):

K(r) ≡ 〈ρ(x)ρ(x + r)〉 =
∫
S(k)eik·r dk. (20)
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Substituting equation (19) into equation (18), and taking into account thatδ(0) = V/(2π)3,
we obtain the general equation for the dispersion law of the averaged waves in the Bourret
approximation in the form

ν − k2 = ε2
∫
S(k − k1) dk1

ν − k2
1

. (21)

Thus, all we need to know for the calculation of the spectrum of waves in this approximation
is the correlation function of the superlattice. In deriving this correlation function we will
follow the method which was suggested in reference [15], which is a generalization of the
well known radio-physics model of the stochastic modulation of the frequency of a periodic
radio-signal [16, 17] to the case of one-, two-, and three-dimensional inhomogeneities in
a superlattice. In reference [15] this method has been applied to the model of an initial
superlattice with harmonic dependences of its material parameters along thez-axis. We extend
this approach here to a multilayer structure, i.e., to a superlattice whose material parameters
depend onz in the form of rectangular spatial pulses in the initial state, and can be represented
by a Fourier series. The randomization is taken account by introducing a random modulation
u of the superlattice period. In the general case this modulation can be a function of all
coordinatesx, y, andz:

ρ(x) = 4

π

∞∑
m=0

(−1)m

p
cosp

[
q
(
z− u(x)) +ψ

]
(22)

wherep = 2m + 1.
In the absence of disorderρ(x) has the form of rectangular spatial pulses. The stochastic

properties of the functionρ(x) have to be derived from the stochastic properties of the function
u(x) which characterizes, in the main, the inhomogeneity of the positions and structure of the
interfaces. The latter function belongs to the class of inhomogeneous random functions with
homogeneous increments. However, the random functionρ(x), which depends onu(x), is
already homogeneous by virtue of its bounded amplitude, and can be characterized by the
correlation functionK(r). As in reference [15] we have introduced a coordinate-independent
random phaseψ , which is characterized by a uniform distribution in the interval(−π, π).
Hence, we consider an ensemble of random realizations of the superlattice. The condition of
ergodicity is now satisfied for the functionρ(z): the spatial average is equal to the ensemble
average, and we can use the correlation theory, i.e. equations (19), (20), and (21), even in the
case whereu = 0.

The product of the functionsρ(x) andρ(x + r) can be represented in the form

ρ(x + r)ρ(x) = 8

π2

∞∑
m=0

∞∑
m′=0

(−1)m+m′

pp′

×
{

cosq
[
prz − p′u(x) + pu(x + r) + (p − p′)(z +ψ/q)

]
+ cosq

[
prz − p′u(x)− pu(x + r) + (p + p′)(z +ψ/q)

]}
(23)

wherep′ = 2m′ + 1. The second summand in the braces vanishes after averaging over the
phaseψ . The terms withp′ 6= p in the first summand vanish as well, and after this averaging
we have

〈ρ(x + r)ρ(x)〉ψ = 8

π2

∞∑
m=0

1

p2
cosp(qrz + χ) (24)
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where

χ(x, r) = q
[
u(x + r)− u(x)

]
. (25)

Averaging equation (24) overχ with a Gaussian distribution function forχ , we obtain a general
expression for the correlation function in the form

K(r) = 8

π2

∞∑
m=0

1

p2
cospqrz exp

[
−p

2

2
Q(r)

]
(26)

where

Q(r) = q2

〈[
u(x + r)− u(x)

]2
〉

(27)

is the dimensionless structure function of the random displacementsu(x).
For the special case of an ensemble of the ideal initial superlattices for whichu = 0,

Q = 0, we obtain the correlation function in the form

K(r) = 8

π2

∞∑
m=0

1

p2
cospqrz (28)

and the spectral density corresponding to it in the form

S(k) = 4

π2
δ(kx)δ(ky)

∞∑
m=0

1

p2

[
δ(kz − pq) + δ(kz + pq)

]
. (29)

Substituting this expression into equation (21) we obtain the equation for the eigen-
frequencies of the ideal superlattice

ν − k2 = 32

4

∞∑
m=−∞

1

p2

1

ν − (k − pq)2 . (30)

One can see that the two-wave approximation corresponds to the neglect in this equation of
all terms of the series except one(p = n). In fact, equation (12) follows from equation (30)
in this case.

To obtain equation (14), which corresponds to the even Brillouin zones, one can take into
account the next term in the expansion of the mass operator (18). We do not do that in this
paper, and restrict ourselves to considering only the odd crossing resonances, for which the
gaps have the largest values and decrease most slowly with increasingn.

It should be noted that the series in equation (30) can be summed, and we obtain

ν − k2 =
(
π

4

)3
32

q
√
ν1

[
1

ζ−

(
1− 1

ζ−
tanζ−

)
+

1

ζ+

(
1− 1

ζ+
tanζ+

)]
(31)

where

ζ± = π

2q

(√
ν − κ2 ± kz

)
. (32)

This transcendental equation, which corresponds to the ‘exact’ Bourret approximation (30),
contains only the second power of3 explicitly. But the expansion of its solutions can contain
all powers of this parameter. The same is true for equation (8) when only the first term on
the right-hand side is taken into account. The solutions of these equations must not coincide
identically. But there is such a coincidence for the odd Brillouin zones through terms of second
order in3 at least: both equations give the identical approximate equation (12) in the vicinity
of the Brillouin zone boundaries for odd values ofn.
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3. The correlation function of a randomized multilayer structure

The general expression for the correlation function (26) derived here differs significantly from
the corresponding general expression obtained in reference [15] for the model of the super-
lattice with a harmonic dependence of material parameters (see equation (I.16)) [22]. But the
structure functionQ(r) which appears in equation (26) does not depend on the form of the
function which describes the initial ideal superlattice. So, we can use here the results which
have been obtained forQ(r) in reference [15], amplifying and correcting them if necessary.

The structure functionQ(r) is connected through equation (I.22) with the spectral density
Sφ(k) of the uniform random functionφ(x) = ∇u(x):

Q(r) = 2q2
∫

dk

k2
Sφ(k)(1− cosk · r). (33)

Correlation properties of the functionφ(x) can be modelled by some standard correlation
functionKφ(r). One of the main results of reference [15] is that the structure functionQ(r)

and, consequently, the correlation function of the superlatticeK(r) do not depend on the
form of the modelling functionKφ(r), for the limiting cases of short-wavelength and long-
wavelength inhomogeneities (see equations (I.23)–(I.32)). This statement is valid also for the
multilayer type of superlattice, but the determination of these limiting cases becomes more
complicated. We obtain the expression for the correlation function in the one-dimensional
case in the approximate form

K(r) = 8

π2

∞∑
m=0

1

p2
cospqrz8p (34)

where

8p =
{

exp(−p2k2
c1r

2
z /2) p � p0

exp(−p2kc2rz) p � p0.
(35)

Here kc1 = σq, kc2 = (σq)2/k‖, andp0 = k‖/σq; σ is the rms fluctuation of the one-
dimensional random functionφ(z), andk‖ is the correlation wavenumber of this function.

As for the superlattice with a harmonic initial dependence, we have a Gaussian decay
of correlations for the case of smooth fluctuations ofu(z) and an exponential decay for
short-wavelength fluctuations. But the demarcation line between the ‘smooth’ and ‘short-
wavelength’ inhomogeneities now depends on the numberp of the harmonic of the series. For
the harmonics withp � p0 the upper line of equation (35) holds, while for the harmonics
with p � p0 the lower one is valid. Ifp0 < 1 we have Gaussian decay for all harmonics of
the series.

In obtaining equation (35) we used equations (I.27) forQ(rz) in the limiting cases of large
and smallrz. When the conditionp � p0 orp � p0 is satisfied, the corresponding expression
is approximately valid everywhere within the region of variation ofrz (see the justification for
such an approach forp = 1 in reference [15]).

An analogous approach is valid for smooth inhomogeneities in the three-dimensional case
as well. But for the short-wavelength inhomogeneities it cannot be used in the latter case
because the corresponding approximate expression forQ(r) diverges atr → 0. In fact, let us
consider the exact expression (I.30) forQ(r) in the three-dimensional case:

Q(r) = 2

(
σq

k0

)2
[

1− 2

k0r
+

(
1 +

2

k0r

)
exp(−k0r)

]
(36)

whereσ is the rms fluctuation of the three-dimensional random functionφ(r) with isotropic
correlation properties that are characterized by the correlation wavenumberk0. (Note that
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there is misprint in equation (I.30); the correct expression, which was in fact analysed in
reference [15], corresponds to equation (36) of the present paper.) The limiting cases of these
expressions are

Q(r) ≈

(σqr)2/3 k0r � 1

2

(
σq

k0

)2(
1− 2

k0r

)
k0r � 1.

(37)

One can see that the correlation functionK(r) with Q(r) determined by the lower line of
equation (37) cannot be used everywhere within the region of variation ofr. For the case of
three-dimensional short-wavelength inhomogeneities we will use here another approximation.
SinceQ(r) is limited by the value of 2(σq/k0)

2, we represent the exponent in equation (26)
as a power series inp2Q/2 and restrict ourselves to the first power of this quantity. In so doing
we use forQ(r) the exact equation (36). As a result we can represent the correlation function
for three-dimensional inhomogeneities in the form of equation (34), where

8p =


exp(−p2k2

c3r
2/2) p � p0

1−
(
p

p0

)2[
1− 2

k0r
+

(
1 +

2

k0r

)
e−k0r

]
p � p0.

(38)

Herekc3 = σq/
√

3 andp0 = k0/σq.
As in the one-dimensional case, the critical numberp0 divides the harmonics of the

series (26) into two groups, with different approximate expressions for each of them. If
p0 < 1 we have Gaussian decay for all terms of the series.

Performing the Fourier transformation of the correlation function (34), where8p is given
by equation (35), we obtain the spectral density for the case of one-dimensional inhomo-
geneities in the form

S(k) = δ(kx)δ(ky) 8

π2

∞∑
m=−∞

1

p2
Sp(kz) (39)

where

Sp(kz) =


1

π2kc1p
exp[−(kz − pq)2/2p2k2

c1] |p| � p0

kc2

2π
[p4k2

c2 + (kz − pq)2]−1 |p| � p0.

(40)

Performing the Fourier transformation of the correlation function (34), where8p is given by
equation (38), we obtain the spectral density for the case of three-dimensional inhomogeneities.
For |p| � p0 we obtain

S(k) =
√

2

π7/2k3
c3

∞∑
m=−∞

1

p5
exp[−(k − pq)2/2p2k2

c3] (41)

while for |p| � p0

S(k) = 4

π2

∞∑
m=−∞

{(
1

p2
− 1

p2
0

)
δ(k − pq)− k0

p2
0(k

2
0 + |k − pq|2)2

+
1

π2p2
0k0

1

|k − pq|
∫ ∞

0
(1− e−k0r ) sin(r|k − pq|) dr

}
. (42)
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4. The spectrum and damping of waves

Substituting the expressions forS(k) obtained above into equation (21) and performing the
integration we obtain equations for the spectrum of waves in the extended zone scheme. With
the appearance of randomness in the medium the dispersion lawω(k) of the average waves
becomes a complex function. There are two approaches to the analysis of such a law, depending
on the formulation of the problem. If we consider a boundary-value problem on the spectrum
and damping of standing waves in the absence of excitation, the wave vectork is a real quantity,
while the frequency is complex:ω = ω′ + iω′′, whereT = 1/ω′′ determines the relaxation
time of the standing waves. If we consider the problem of wave propagation for given initial
conditions, the frequency is a real quantity, while the wave vector is complex:k = k′ + ik′′,
and 1/k′′ determines the mean free path of the wave. We will use the first approach in the
derivation and analysis of the complex dispersion laws.

4.1. Planar one-dimensional inhomogeneities

Substituting equation (39) into equation (21) we obtain the equation for the spectrum in the
form

ν − k2 = 32

4

{ ∑
|p|�p0

F (1)p (ν, k) +
∑
|p|�p0

F (2)p (ν, k)

}
. (43)

The functionsF (1)p andF (2)p in this equation are

F (1)p =
√
ν1− ip2kc2

p2√ν1

1

(
√
ν1− ip2kc2)2 − (pq − kz)2 (44)

F (2)p =
1

p3kc1
√

2ν1

[
D(u) +D(v) + i

√
π

2
(e−u

2
+ e−v

2
)

]
(45)

where

D(x) = e−x
2
∫ x

0
et

2
dt

is Dawson’s integral, whose argumentsu andv are given by

u = 1√
2pkc1

[
√
ν1− |kz − pq|]

v = 1√
2pkc1

[
√
ν1 + |kz − pq|]. (46)

The series from−∞ to +∞ on the right-hand side of equation (43) divides into two parts
according to the inequalities that determine the different forms ofSp(k) in equation (39). The
terms with|p| ∼ p0 are absent on the right-hand side of equation (43) because their analytical
forms are unknown to us. The complete equation (43) is very complicated for analytical
analysis. But in the two-wave approximation we can describe the spectrum in the vicinity of
each crossing resonancek ∼ krn = nq/2 by using only the term of the series withp = n.
For waves propagating along thez-axis (kz = k, ν1 = ν) we obtain in the case|p| � p0

(short-wavelength inhomogeneities) the equation

(ν − k2)[(
√
ν − in2kc2)

2 − (nq − k)2] = 32

4n2

√
ν − in2kc2√

ν
(47)

wheren = 2m + 1.
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Under the conditionnkc2/kr � 1 we can neglect both the imaginary part of the coupling
parameter and the shift of the crossing resonance point, and obtain the equation in the two-wave
approximation in the form

(ν − k2)[ν − in3G2 − (nq − k)2] =
(
3

2n

)2

(48)

whereG2 ≈ kc2q = σq2/p0 = σ 2q3/k‖ is the damping parameter.
This equation has the complex solution at thenth Brillouin zone boundary

ν± = νrn ± 1

2
1νn + iξ± (49)

where

1νn =
√(

3

n

)2

− (n3G2)2 (50)

is the width of a gap, and

ξ± = n3G2/2 (51)

is the damping of the wave.
The features of the behaviour of both the realν(k) and imaginaryξ(k) parts of the solution

in the vicinity of the resonance pointsknr are the same as those at the first Brillouin zone
boundary, which have been considered in reference [15]. But now the width of the gap and
the condition for the gap to be opened depend on the numbern of the zone. If the inequality

3

n
> n3G2 (52)

is satisfied, the degeneracy is removed at the resonance point, the real parts of the dispersion
curvesν ′±(k) separate, and a gap1νn appears in the spectrum. In the opposite case the
dispersion curve is continuous and has an inflexion at the resonance point.

All these results lead us to formulate the following rule of similarity: all characteristics
of the spectrum and damping have an identical form in the vicinity of the boundaries of all
Brillouin zones with zone numbern� p0 if we introduce an effective coupling parameter3n

and an effective dampingGn by

3n = 3

n
Gn2 = n3G2. (53)

Now we consider the case|p| � p0 (long-wavelength inhomogeneities) in the two-wave
approximation withp = n. For wave propagation along thez-axis we have the equation

ν − k2 = q32

4G1n3
√

2ν

{
D(u) +D(v) + i

√
π

2
(e−u

2
+ e−v

2
)

}
(54)

whereG1 = qkc1 = σq2, andu andv are defined by equation (46) withp = n. For the first
Brillouin zone boundary(n = 1) this equation has been analysed in reference [15] by numerical
methods in the interval 0.2 < G1/3 < 0.8. An analytical estimation of the solution for the
caseG1/3� 1 has also been carried out. It was shown that there are significant differences
between the behaviour of the solutions of equations (54) and (47) in the vicinity ofkr = q/2. If
a monotonic decrease of the gap1ν with increasingkc1 has been obtained for the exponential
correlations, the increase of randomization for the Gaussian correlations leads at first to the
increase of the gap and only then to its decrease and closing. There are also differences
between the imaginary parts of the solutions of equations (54) and (47), especially in the case
whereG1,2 � 3. At the resonance point the damping constantsξ± are always equal to each
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other, but for the exponential correlations they are both equal toG2/2, while for the Gaussian
correlations they may be much smaller thanG1/2.

Here we solve equation (54) numerically in a wider interval of damping variations.
We analyse analytically more carefully the limiting case of small damping, and also find
an approximate analytical solution in the limiting case when the gap becomes narrow in
comparison with its initial value. This permits us to obtain an expression for the effective
damping parameterGn1 for the case of long-wavelength inhomogeneities.

First of all we point out that the contributions of the two terms in equation (54) that depend
on v are negligibly small in comparison with the terms depending onu. For small damping
the argumentu� 1, and we obtain the asymptotic expression for Dawson’s integral using the
Laplace method (see, e.g., reference [23]):

D(u) ≈ 1

2u

(
1 +

1

2u2

)
. (55)

In this approximation equation (54) can be represented in the form

u4 − b
2
(1 + i
√
πue−u

2
)u2 − b

4
= 0 (56)

whereb = (3/2n3G1)
2, and the imaginary term is small in comparison with unity. Solving

this equation as a biquadratic equation in zero approximation, and taking into account the
imaginary term in the next approximation, we obtain the expressions for the gap and damping

Figure 1. The dependence of the normalized width of the gap1νn/3n on the normalized value of
the dampingGn/3n caused by disorder for the Gaussian correlations of the inhomogeneities (solid
curve). The approximations corresponding to equations (57) and (59) are shown by the dashed
curves.
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at thenth Brillouin zone boundary forb � 1:

1νn = 3

n

(
1 +

1

b

)1/2

(57)

ξ± = 1

2

(
π

2

)1/2

G1n
2(b − 1) exp

[
−1

2
(b + 1)

]
. (58)

In the opposite limiting case, where the influence of the inhomogeneities is large enough,
and the gap becomes narrow in comparison with its initial value, by using the approximate
expression forD(u) for u� 1, we obtain

1νn =
[√
π

(
3

n

)2

− 2(n2G1)
2

]1/2

(59)

ξ± = n2G1/
√

2= n2σq2/
√

2. (60)

The condition for the gap to be open is now determined by an inequality different to equ-
ation (52), namely

3

n
>

(
2√
π

)1/2

n2G1. (61)

One can see that the rule of similarly holds for the casesn� p0 too, but the effective damping
parameter now has another power in its dependence onn, namelyGn = n2G1.

The dependence of1νn on Gn which was obtained from the numerical solution of
equation (54) is shown in figure 1 in the normalized coordinatesY = 1νn/3n andX = Gn/3n

(solid curve). The approximations given by equations (57) and (59) are also shown in this figure
by dotted curves. One can see thatY (X) is a universal function which does not depend on the
band numbern in these normalized variables.

Now we consider the dependence of the gap on the zone numbern for both n � p0

andn � p0. In figure 2(a) this dependence is shown for a superlattice with very small
randomization when the conditions for the gaps to be open are satisfied for large enough
values ofn. In the case wherep0 < 1 the spectrum is described by equation (54) for all values
of n. The circles in figure 2(a) correspond to this case: all open gaps fromn = 1 to n = 27
satisfy the condition (61), which is valid for Gaussian correlations of the inhomogeneities.
We chose the relationG1/3 ≡ σq2/3 = (π1/4/

√
2)(29)−3 for the calculation of this curve.

Thus we find that the first closed gap corresponds ton = 29 in accordance with equation (59).
The form of this curve does not depend onk‖; that is why for the given relationσq2/3 it has
the same form for all valuesp0 = k‖/σq < 1.

The stars in figure 2(a) correspond to the case wherep0 � 30. In this case where
equation (47), which corresponds to the exponential correlations, is valid for all open gaps. In
contrast to the preceding case, the form of the curve now depends onp0. We calculated this
curve forσq2/3 = (π1/4/

√
2)(29)−3 andp0 = 61. The opening of new gaps forn > 27

in this case is determined by the fact that increasingp0 decreases the damping parameter
G2 = σq2/p0.

In this case the most important terms of the series in equation (43) have the form ofF (1)p .
This series can be summed approximately if we assume that all of the terms have the form of
F (1)p and neglect(nkc/q)2 in comparison with unity:

ν − k2 = π32

8q
√
ν1

{
1

ζ−

[
1−

(
1

8−
− 2ikc
πq

8−
ζ−

)
tan8−

]

+
1

ζ+

[
1−

(
1

8+
− 2ikc
πq

8+

ζ+

)
tan8+

]}
(62)
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(a)

(b)

Figure 2. The dependence of the normalized width of the gap1νn/3n on the zone number
n for one-dimensional (a) and three-dimensional (b) inhomogeneities. Stars correspond to the
exponential correlations of one-dimensional inhomogeneities, and the power-like correlations
of three-dimensional inhomogeneities; circles correspond to the Gaussian correlations for all
dimensions.
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where

82
± =

(
π

2

)2
(
√
ν1± kz)2

q2 + 2ikc2(
√
ν1± kz)

.

Whenkc2→ 0, this equation transforms into equation (31), which describes the exact Bourret
approximation in the absent of the randomization. Equation (62) can be useful if it is necessary
to find corrections to the two-wave approximation described by equation (47).

4.2. Isotropic three-dimensional inhomogeneities

Substituting equations (41) and (42) into equation (21) we obtain the equation for the spectrum
in the same general form as equation (43), but with different terms in the series:

ν − k2 = 32

4

{ ∑
|p|�p0

L(1)p (ν,k) +
∑
|p|�p0

L(2)p (ν,k)

}
(63)

wherep0 = k0/σq. For the case where|p| � p0 we obtain

L(1)p =
(

1

p2
− 1

p2
0

)
1

ν − (k − pq)2

+
1

2k0p
2
0|k − pq|

[
1

v1− i
− 1

u1− i
+ 2i

(
ln
u1− i

u1
− ln

v1− i

v1

)]
(64)

where
u1 = (

√
ν − |k − pq|)/k0

v1 = (
√
ν + |k − pq|)/k0.

(65)

For the case|p| � p0 we have

L(2)p =
1√

2kc3p3

1

|k − pq|
[
D(u2)−D(v2) + i

√
π

2
(e−u

2
2 − e−v

2
2)

]
(66)

where

u2 = (
√
ν − |k − pq|)/

√
2pkc3

v2 = (
√
ν + |k − pq|)/

√
2pkc3.

(67)

Just as in the case of the one-dimensional homogeneities treated above, for the three-
dimensional inhomogeneities we can describe the spectrum in the vicinity of each crossing
resonancekrn = nq/2 in the two-wave approximation by using only the term of the series
with p = n. For wave propagation along thez-axis we obtain in the case where|n| � p0 the
dispersion relation

ν − k2 = 32

4

{(
1

n2
− 1

p2
0

)
1

ν − (k − nq)2

+
1

2k0p
2
0|k − nq|

[
1

v1− i
− 1

u1− i
+ 2i

(
ln
u1− i

u1
− ln

v1− i

v1

)]}
. (68)

This equation can be investigated approximately in limiting cases. For the case where|u| � 1,
|v| � 1 we obtain for the width of the gap and the damping parameters at thenth Brillouin
zone boundaryk = krn

1νn ≈ 3n

[
1 +

2

3

(
n

p0

)2

ηn

]
(69)

ξ± = 3n

(
n

p0

)2

η3
n (70)
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whereηn = k0qn/3n � 1.
In another limiting case, that where|u| � 1, |v| � 1, whenηn � 1 we have

1νn ≈ 3n

[
1− 1

2

(
n

p0

)2(
1− π

2ηn

)]
(71)

ξ± = 3n

4ηn

(
n

p0

)2

ln(2ηn). (72)

One can see that equation (71) forn/p0� 1 does not describe the situation when1ν → 0.
In contrast to the one-dimensional case, the gap cannot close under the influence of three-
dimensional inhomogeneities until the inequalityn� p0 is satisfied.

We now turn to the terms of the series (63) corresponding to|p| � p0. For the waves
propagating along thez-axis the equation for the spectrum in the two-wave approximation has
the form

ν − k2 = q32

4
√

2G3n3

1

|k − nq|
[
D(u2)−D(v2) + i

√
π

2
(e−u

2
2 − e−v

2
2)

]
(73)

whereG3 = kc3q = σq2/
√

3. At first glance it would seem that this equation has significant
differences from equation (54), which corresponds to one-dimensional inhomogeneities: the
functions ofv have opposite signs, and the quantity|k − nq| occurs in the denominator of
the right-hand side instead of

√
ν. However, numerical calculations demonstrate that the

solutions of equation (73) differ little from the solutions of equation (54) investigated above.
An analytical analysis of the limiting cases ofGn3 � 3n andGn3 ∼ 3n gives the same
equations (57), (58) and (59), (60), respectively, which have been obtained for equation (54),
with the natural change of the damping parameterG1 = kc1q in all of these expressions to
the damping parameterG3 = kc3q corresponding to equation (73). The relation between
these parameters isG3/G1 = kc3/kc1 = 1/

√
3 and, for example, for the damping at thenth

Brillouin zone boundary we obtain

ξ± = n2σq2/
√

6. (74)

The dependence of1νn on the zone numbern is shown in figure 2(b). Both curves have
been calculated for the relationσq2/3 = (π1/4/

√
2)(29)−3, as in the one-dimensional case.

As in figure 2(a) the circles correspond to the case wherep0 < 1, and the stars correspond to the
case wherep0 = 61. Comparing the results for one- and three-dimensional inhomogeneities
one can see that for the case wherep0 < 1 corresponding to smooth inhomogeneities with
Gaussian correlations new gaps corresponding ton = 29, 31, and 33 open in the three-
dimensional case in accordance with equation (59), where the damping parameterG1 has
been replaced by the smaller parameterG3. Even greater differences between the one- and
three-dimensional cases are found for the short-wavelength inhomogeneities whenp0 = 61
(we assume thatk0 = k‖). Many new gaps open in the three-dimensional case when the
random deformation of the interfaces is added to their random displacements, the only form
of randomization considered in the one-dimensional case.

Both figures 2(a) and 2(b) have an illustrative nature. A system for which about 30
Brillouin zones with open gaps could be investigated is far from reality. But for a real system
with only several open gaps the dependence of1νn/3n onnwill be the same as in figures 2(a),
2(b), only the points will be plotted very sparsely.

In comparing the results for one- and three-dimensional inhomogeneities one should take
account of the fact that the analytical expressions for the cases ofGin � 3n andGin ∼ 3n are
different. We compare here the expression for the effective damping parameterξ± at thenth
Brillouin zone boundary for the cases whereGin ∼ 3n, i = 1, 2, 3. One can see that for the
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case wheren� p0 equation (60) for one-dimensional and equation (74) for three-dimensional
inhomogeneities differ from one another only by numerical coefficients (the damping for
three-dimensional inhomogeneities is smaller than that for one-dimensional inhomogeneities).
At the same time, for the case wheren � p0 equation (51) for one-dimensional and
equation (72) for three-dimensional inhomogeneities have different dependences on the
fundamental characteristic of the superlattice (3 and q), the inhomogeneities(σ and ki),
and the zone numbern.

The expressions (51), (58), (60), (70), (72), and (74) give the damping parameters in units
of the square of a wave vector. To obtain the quantities corresponding to the imaginary value
of the frequencyω′′ these parameters have to be multiplied byαgM for spin waves, byv/2k
for elastic waves, and byc/2k

√
εe for electromagnetic waves.

5. Conclusions

The approach to the investigation of the wave spectrum of partially randomized superlattices
that was suggested in reference [15] has been extended here to the case of superlattices with
sharp interfaces, i.e. multilayer structures. The dependence of the material parameters on the
coordinate along the axis of the initial ideal superlattice now has the form of periodic rectangular
pulses which we represent by their Fourier series. The randomization of the superlattice is
described by introducing a random modulation of the period of the initial ideal superlattice.
One- and three-dimensional modulations are considered. As in reference [15], the spectrum
and damping of the wave is investigated in the Bourret approximation, which corresponds to
taking into account the first term of the series for the mass operator of the averaged Green’s
function. For the harmonic superlattice this approximation permits investigating only the first
Brillouin zone, because the spectrum of the zones withn 6= 1 is determined by the next terms
of the series.

In contrast to this, the Bourret approximation for the multilayer structure gives the
possibility of investigating the spectrum and damping in the vicinity of the boundary of any
odd Brillouin zone. Because of this, the gap widths and the values of the damping parameters
are found for all odd Brillouin zones, and the dependences of these characteristics on the
zone numbern are found. As for superlattices with initial harmonic dependences of their
material parameters, for superlattices with sharp interfaces different results are obtained for
short-wavelength and smooth inhomogeneities. But the demarcation line between smooth and
short-wavelength inhomogeneities depends now on the zone numbern. The inhomogeneities
characterized by the intensityσ and the correlation wavenumberk‖ (for the one-dimensional
case) ork0 (for three-dimensional case) are the short-wavelength ones for the Brillouin zones
with n < k‖/σq and the smooth ones for the zones withn > k‖/σq. It was found that the
damping parameters and the conditions for the closing of the gaps depend differently on the
zone numbern for the short-wavelength and smooth inhomogeneities. There are significant
differences in the dependences of the gap width onn for the one- and three-dimensional
inhomogeneities, especially for the short-wavelength ones. The appearance of the random
deformation of the interfaces along with their random displacements from the initial positions
leads to a decrease of the damping and to the opening of new gaps in comparison with the
one-dimensional case, where only random displacements of interfaces occur. In all cases, with
increasing disorder the successive closing of the gaps in the spectrum takes place beginning
with large values ofn down ton = 1.

Experimental investigations of the spin-wave spectrum are restricted for the present to
the vicinity of the first Brillouin zone boundary [24, 25]. It would be of interest to carry out
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experiments covering several Brillouin zones to investigate the regularities described by the
equations of this paper.
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